radioactive waste - translation to ολλανδικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

radioactive waste - translation to ολλανδικά

WASTE THAT CONTAINS RADIOACTIVE MATERIAL AND THUS EMITS IONIZING RADIATION
Atomic waste; Nuclear waste; Radioactive Waste; NUCLEAR POLLUTION; Radioactive pollution; Radioactive waste treatment; Radwaste; Nuclear Waste; Nuclear dumping; Radioactive pollutants; Radioactive gases; Nuclear waste disposal; Nuclear residue; Chemistry of radioactive waste; Waste, radioactive; Nuclear waste dump; Nuclear waste storage; Radioactive dump; Nuclear waste management; Classifications of nuclear waste; Classification of radioactive waste; Classification of nuclear waste; Low and intermediate level waste; Intermediate-level waste; Low and intermediate-level waste; Intermediate-level nuclear waste; Radioactive wastes; Reuse of radioactive waste; Illegal dumping of radioactive waste
  • U-233]] for three fuel types. In the case of MOX, the U-233 increases for the first 650 thousand years as it is produced by the decay of [[Np-237]] which was created in the reactor by absorption of neutrons by U-235.
  • Total activity for three fuel types. In region 1, there is radiation from short-lived nuclides, in region 2, from [[Sr-90]] and [[Cs-137]], and on the far right, the decay of Np-237 and U-233.
  • Removal of very low-level waste
  • nuclear waste disposal centre]] at [[Gorleben]] in northern Germany
  • Diagram of an underground low-level radioactive waste disposal site
  • Modern medium to high-level transport container for nuclear waste
  • abbr=on}} thick solid steel and weighs in excess of 50 t
  • The current locations across the United States where nuclear waste is stored
  • access-date=2020-11-13}}</ref> near the [[Olkiluoto Nuclear Power Plant]] in [[Eurajoki]], on the west coast of [[Finland]]. Picture of a pilot cave at final depth in Onkalo.
  • The Waste Vitrification Plant at [[Sellafield]]
  • low-level]] radioactive waste barrels.
  • archive-date=February 5, 2007}}</ref>
  • date=2016-07-11 }}, ''Nature'', 13 January 2016.</ref>

radioactive waste         
radioactieve afval
nuclear waste         
kernafval
radioactive fallout         
  • pre-war steel]] and post-war steel which is manufactured without atmospheric air, became a valuable commodity for scientists wishing to make extremely precise instruments that detect radioactive emissions, since these two types of steel are the only steels that do not contain trace amounts of fallout.
  • [[Fallout shelter]] sign on a building in [[New York City]]
  • Calculated [[caesium-137]] concentration in the air, 25 March 2011
  • One of many possible fallout patterns mapped by the United States [[Federal Emergency Management Agency]] that could occur during a nuclear war. (Based on 1988 data.)
RESIDUAL RADIOACTIVE MATERIAL FOLLOWING A NUCLEAR BLAST
Fall out; Radioactive Fallout; Radioactive cloud; Radioactive dust; Radioactive fallout; Nuclear Fallout; Fallout; Nuclear dust; Radiological fallout; Nuclear fallouts; The Seven Ten Rule; Nuclear snow
radioactieve neerslag

Ορισμός

radwaste
¦ noun informal radioactive waste.

Βικιπαίδεια

Radioactive waste

Radioactive waste is a type of hazardous waste that contains radioactive material. Radioactive waste is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, nuclear decommissioning, rare-earth mining, and nuclear weapons reprocessing. The storage and disposal of radioactive waste is regulated by government agencies in order to protect human health and the environment.

Radioactive waste is broadly classified into low-level waste (LLW), such as paper, rags, tools, clothing, which contain small amounts of mostly short-lived radioactivity, intermediate-level waste (ILW), which contains higher amounts of radioactivity and requires some shielding, and high-level waste (HLW), which is highly radioactive and hot due to decay heat, so requires cooling and shielding.

In nuclear reprocessing plants about 96% of spent nuclear fuel is recycled back into uranium-based and mixed-oxide (MOX) fuels. The residual 4% is minor actinides and fission products the latter of which are a mixture of stable and quickly decaying (most likely already having decayed in the spent fuel pool) elements, medium lived fission products such as strontium-90 and caesium-137 and finally seven long-lived fission products with half lives in the hundreds of thousands to millions of years. The minor actinides meanwhile are heavy elements other than uranium and plutonium which are created by neutron capture. Their half lives range from years to millions of years and as alpha emitters they are particularly radiotoxic. While there are proposed - and to a much lesser extent current - uses of all those elements, commercial scale reprocessing using the PUREX-process disposes of them as waste together with the fission products. The waste is subsequently converted into a glass-like ceramic for storage in a deep geological repository.

The time radioactive waste must be stored for depends on the type of waste and radioactive isotopes it contains. Short-term approaches to radioactive waste storage have been segregation and storage on the surface or near-surface. Burial in a deep geological repository is a favored solution for long-term storage of high-level waste, while re-use and transmutation are favored solutions for reducing the HLW inventory. Boundaries to recycling of spent nuclear fuel are regulatory and economic as well as the issue of radioactive contamination if chemical separation processes cannot achieve a very high purity. Furthermore, elements may be present in both useful and troublesome isotopes, which would require costly and energy intensive isotope separation for their use - a currently uneconomic prospect.

A summary of the amounts of radioactive waste and management approaches for most developed countries are presented and reviewed periodically as part of a joint convention of the International Atomic Energy Agency (IAEA).

Παραδείγματα από το σώμα κειμένου για radioactive waste
1. Footnotes Stockpile Britain has produced radioactive waste since the 40s.
2. This should form a vital part of the long–term management of radioactive waste as the process moves to selecting sites and beyond." Professor Gordon MacKerron, chairman of the committee on radioactive waste management, said: "The UK has been creating radioactive waste for 50 years without any clear idea of what to do with it.
3. Politicians, environmentalists and business still can‘t decide how to dispose of radioactive waste.
4. Radioactive waste is first enclosed in tough containers, with the repository‘s surrounding rock preventing radioactive leakage.
5. If not disposed of properly, radioactive waste can pose a serious threat to people nearby.